

PROBLEM N[°]9 SCREAMING BALLOON

Team Ecole polytechnique

Problem

A sound is produced when a hex nut is made to rotate in a balloon.

How do the characteristics of the sound depend on the parameters of the system ?

Experimental setup

White LED Pannel

Influence of gravity:

 $mg < m(2\pi f_{rot})^2 R \Rightarrow f_{rot} > 1.6 Hz$

Influence of Doppler effect:

$$\frac{2\pi R f_{rot}}{c} < 0.1 \Rightarrow f_{rot} < 54 \, Hz$$

Effective range: $3 Hz < f_{rot} < 10 Hz$

How does the hex move ?

The hex does not slide

Influence of friction

Fourier transform

Typical Fourier transform

How does the macroscopic rotation speed influence the sound ?

Low frequencies: w/o rotation

Does the membrane of the balloon oscillate ?

Zone B – Theorical model

Vibration frequencies of an elastic spherical shell:

Source: Wilfred E. Baker. Axisymmetric modes of vibration of thin spherical shell. The Journal of the Acoustical Society of America, 33(12): 1749-1758, 1961.

Zone B

ECOLE POLYTECHNIQUE - International Physicists""" Tournament 2018

11

How does the sound of the balloon vary with the size of the hex nut's edge ?

How does the sound of the balloon vary with the size of the hex's edge ?

How does the sound of the balloon vary with the size of the hex's edge ?

How does the sound of the balloon vary with the size of the hex's edge ?

Hex nut with 12 sides

Number of hits per rotation :

$$N=\frac{2\pi R}{l}$$

Number of rotation per second :

 f_{rot}

Zone C - Results

Sound frequencies for different hex nut's lengths

Amplitude

Influence of the rotation

The amplitude is modulated by the varying distance between the ear and the hex nut.

Amplitude

Amplification - Experimental setup

Amplitude

Influence of the sound box

Amplitude gain in function of the frequency

3 frequential
contributions :
• Movement the balloon

$$f_{sound} = f_{rot}$$
 f_{rot}
 f_{rot}
• Oscillation of membrane
 $f_{sound} = f_{resonance}$
 E, v, R, ρ
• Shock (no sliding) of the hex of the membrane
 $f_{sound} = f_{shock} \propto \frac{f_{rot}}{l}$
 f_{rot}, l, R
2 amplitude
contributions :
• Movement the hex nut in the balloon
 $f_{amplitude} = f_{rot}$
 f_{rot}, D
• Sound box-like amplification of sound
 $A \approx 20 dB$
 R, E, v, ρ

Conclusion

ECOLE POLYTECHNIQUE – International Physicists"""" Tournament 2018

How do the characteristics of the sound depend on the parameters of the system ?

17